A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI

نویسندگان

  • Diego Castillo-Barnes
  • Ignacio Peis
  • Francisco Jesús Martínez-Murcia
  • Fermín Segovia
  • Ignacio A. Illán
  • Juan Manuel Górriz
  • Javier Ramírez
  • Diego Salas-Gonzalez
چکیده

A wide range of segmentation approaches assumes that intensity histograms extracted from magnetic resonance images (MRI) have a distribution for each brain tissue that can be modeled by a Gaussian distribution or a mixture of them. Nevertheless, intensity histograms of White Matter and Gray Matter are not symmetric and they exhibit heavy tails. In this work, we present a hidden Markov random field model with expectation maximization (EM-HMRF) modeling the components using the α-stable distribution. The proposed model is a generalization of the widely used EM-HMRF algorithm with Gaussian distributions. We test the α-stable EM-HMRF model in synthetic data and brain MRI data. The proposed methodology presents two main advantages: Firstly, it is more robust to outliers. Secondly, we obtain similar results than using Gaussian when the Gaussian assumption holds. This approach is able to model the spatial dependence between neighboring voxels in tomographic brain MRI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HMRF-EM-image: Implementation of the Hidden Markov Random Field Model and its Expectation-Maximization Algorithm

In this project1, we study the hidden Markov random field (HMRF) model and its expectation-maximization (EM) algorithm. We implement a MATLAB toolbox named HMRF-EM-image for 2D image segmentation using the HMRF-EM framework2. This toolbox also implements edge-prior-preserving image segmentation, and can be easily reconfigured for other problems, such as 3D image segmentation.

متن کامل

Unsupervised Image Segmentation using Tabu Search and Hidden Markov Random Field Model

We propose a Tabu search based Expectation Maximization (EM) algorithm for image segmentation in an unsupervised frame work. Hidden Markov Random Field (HMRF) model is used to model the images. The observed image is considered to be a realization of Gaussian Hidden Markov Random Field (GHMRF) model. The segmentation problem is formulated as a pixel labeling problem. The GHMRF model parameters a...

متن کامل

Speeding up HMRF_EM algorithms for fast unsupervised image segmentation by Bootstrap resampling: Application to the brain tissue segmentation

This work deals with global statistical unsupervised segmentation algorithms. In the context of Magnetic Resonance Image (MRI), an accurate and robust segmentation can be achieved by combining both the Hidden Markov Random Field (HMRF) model and the Expectation-Maximization (EM) algorithm. This EM–HMRF approach is accomplished by taking into account spatial information to improve the segmentati...

متن کامل

GMM-Based Hidden Markov Random Field for Color Image and 3D Volume Segmentation

In this project1, we first study the Gaussian-based hidden Markov random field (HMRF) model and its expectationmaximization (EM) algorithm. Then we generalize it to Gaussian mixture model-based hidden Markov random field. The algorithm is implemented in MATLAB. We also apply this algorithm to color image segmentation problems and 3D volume segmentation problems.

متن کامل

Brain MR Image Segmentation using Tabu Search and Hidden Markov Random Field Model

In this paper, we propose a hybrid Tabu Expectation Maximization (TEM) Algorithm for segmentation of Brain Magnetic Resonance (MR) images in both supervised and unsupervised framewrok. Gaussian Hidden Markov Random Field (GHMRF) is used to model the available degraded image. In supervised framework, the apriori image MRF model parameters as well as the GHMRF model parameters are assumed to be k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017